
GCE AS MARKING SCHEME

SUMMER 2023

**AS
FURTHER MATHEMATICS
UNIT 3 FURTHER MECHANICS A
2305U30-1**

INTRODUCTION

This marking scheme was used by WJEC for the 2023 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

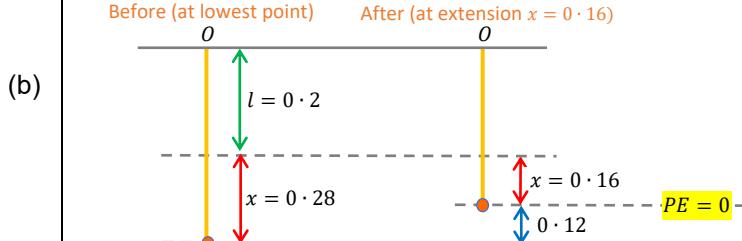
WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

WJEC GCE AS FURTHER MATHEMATICS

UNIT 3 FURTHER MECHANICS A

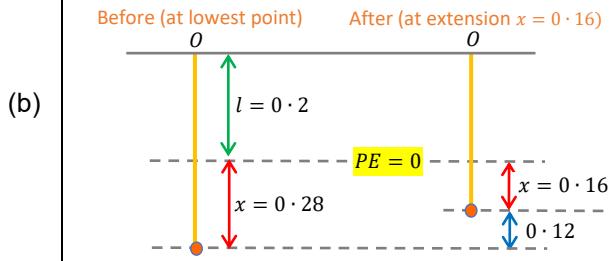
SUMMER 2023 MARK SCHEME

Q1	Solution	Mark	Notes
(a)	<p>Use of Hooke's Law</p> $T = \frac{5gx}{0.2}$ $4g = \frac{5gx}{0.2}$ $x = 0.16 \text{ (m)}$	M1 A1 [2]	Used, $T = \frac{\lambda x}{l}$ $\lambda = 5g = 49$ $4g = 39.2$ Convincing
(b)	<p>Before (at lowest point) After (at extension $x = 0.16$)</p> <p>Using expression for $EE = \frac{\lambda x^2}{2l}$</p> $EE = \begin{cases} \frac{5g(0.28^2 - 0.16^2)}{2(0.2)} & = 6 \cdot 468 = 0.66g \\ \frac{5g(0.28)^2}{2(0.2)} & = 9 \cdot 604 = 0.98g \\ \frac{5g(0.16)^2}{2(0.2)} & = 3 \cdot 136 = 0.32g \end{cases}$ <p>Using expression for $PE = mgh$</p> $PE = \begin{cases} 4g(0.28 - 0.16) & = 4 \cdot 704 = 0.48g \\ 4g(0.28) & = 10 \cdot 976 = 1.12g \\ 4g(0.16) & = 6 \cdot 272 = 0.64g \\ 4g(0.48) & = 18 \cdot 816 = 1.92g \\ 4g(0.36) & = 14 \cdot 112 = 1.44g \end{cases}$ <p>$KE = \frac{1}{2}(4)v^2$</p> <p>Conservation of Energy (before = after)</p> $\frac{5g(0.28)^2}{2(0.2)} = \frac{1}{2}(4)v^2 + \frac{5g(0.16)^2}{2(0.2)} + 4g(0.12)$ $9 \cdot 604 = 2v^2 + 3 \cdot 136 + 4 \cdot 704$ $v^2 = 0.882 \quad (= 0.09g)$ $v = 0.9(391 \dots) \text{ (ms}^{-1}\text{)}$	M1 A1 M1 A1 B1 M1 A1 A1 A1 A1 [8]	A correct expression A correct expression KE, EE and PE all present All correct, oe (see further notes) Note $v = \frac{21\sqrt{5}}{50}$ or $v = 0.3\sqrt{g}$
Total for Question 1		10	


Further Notes

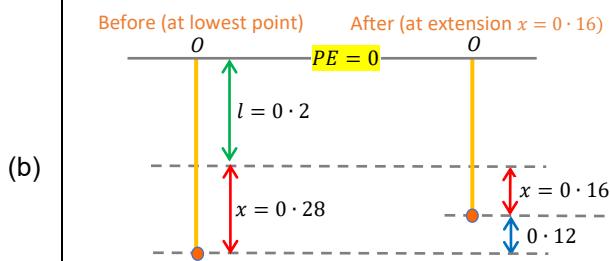
Alternative Solution for Conservation of Energy A1

KE = loss in EE - gain in PE


$$\frac{1}{2}(4)v^2 = \frac{5g(0.28^2 - 0.16^2)}{2(0.2)} - 4g(0.28 - 0.16) \quad \text{A1}$$

$$2v^2 = 6 \cdot 468 - 4 \cdot 704 \quad (2v^2 = \frac{32}{50}g - \frac{12}{25}g \quad \text{or} \quad 2v^2 = 0.64g - 0.48g)$$

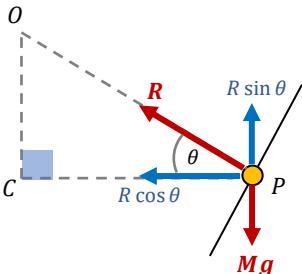
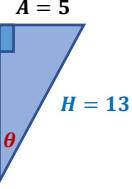
Alternative PE reference points

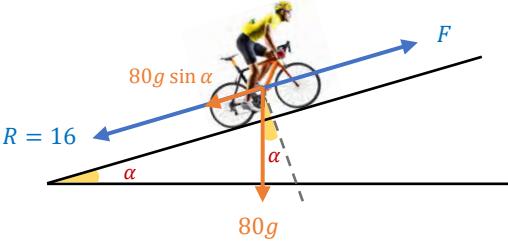

$$\frac{5g(0.28)^2}{2(0.2)} - 4g(0.12) = \frac{1}{2}(4)v^2 + \frac{5g(0.16)^2}{2(0.2)} \quad \text{A1}$$

$$9 \cdot 604 - 4 \cdot 704 = 2v^2 + 3 \cdot 136$$

Alternative PE reference points

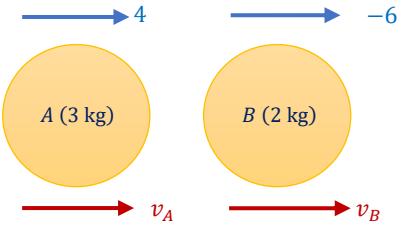
$$\frac{5g(0.28)^2}{2(0.2)} - 4g(0.28) = \frac{1}{2}(4)v^2 + \frac{5g(0.16)^2}{2(0.2)} - 4g(0.16) \quad \text{A1}$$

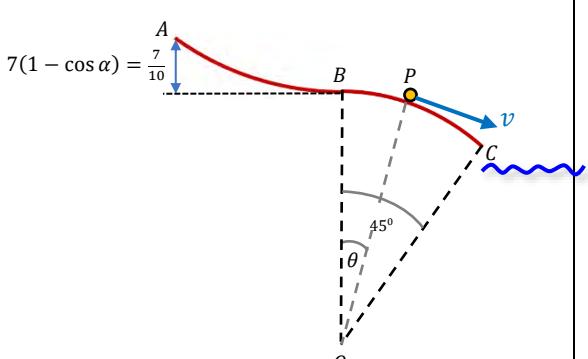


$$9 \cdot 604 - 10 \cdot 976 = 2v^2 + 3 \cdot 136 - 6 \cdot 272$$



$$\frac{5g(0.28)^2}{2(0.2)} - 4g(0.48) = \frac{1}{2}(4)v^2 + \frac{5g(0.16)^2}{2(0.2)} - 4g(0.36) \quad \text{A1}$$

$$9 \cdot 604 - 18 \cdot 816 = 2v^2 + 3 \cdot 136 - 14 \cdot 112$$


Q3	Solution	Mark	Notes
(a)	<p>Resolve vertically $R \sin \theta = Mg$</p> <p>$\sin \theta = \frac{5}{13}$</p> <p>$R = Mg \times \frac{13}{5}$</p> <p>$R = \frac{13Mg}{5}$</p>		$\sin \theta = \frac{5}{13}$ $\cos \theta = \frac{12}{13}$ <p>Dimensionally correct</p> <p>si</p> <p>Convincing</p> <p>[4]</p>
(b)	<p>N2L towards centre $R \cos \theta = Ma$</p> <p>$\frac{13Mg}{5} \times \frac{12}{13} = M \frac{(3\sqrt{g})^2}{r}$</p> <p>$CP = r = \frac{15}{4} (= 3.75 \text{ m})$</p> <p>$\frac{r}{CV} = \frac{5}{12} (= \tan \theta)$</p> <p>$CV = 9 \text{ (m)}$</p>	M1 A1 m1 A1 M1 A1 	<p>Dimensionally correct</p> $a = \frac{v^2}{r}$ <p>oe, similar triangles</p> <p>cao</p> <p>[6]</p>
Total for Question 3		10	


Q4	Solution	Mark	Notes
(a)	<p>(i) Work-energy principle $16 \times d = 1440 \text{ (000)}$ $d = 90 \text{ (000) } (\text{km (m)})$</p> <p>(ii) Using expression for PE or KE</p> <p>At end, $\text{KE} = \frac{1}{2}(80)(10)^2 = 4000$</p> <p>$\text{PE} = 80gh = \begin{cases} 11200g = 109760 & \text{for } h = 140 \\ 12000g = 117600 & \text{for } h = 150 \\ 800g = 7840 & \text{for } h = 10 \end{cases}$</p> <p>Work-energy principle (See notes)</p> <p>$WD = 1440 \text{ 000} + 4000 + 109760$</p> <p>$(WD = 1440 \text{ 000} + 4000 + 11200g)$</p> <p>$WD = 1553 \text{ 760 } (\text{J}) \quad (= 1553 \cdot 760 \text{ kJ})$</p>	<p>M1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>[8]</p>	<p>Used, $F \times d = E$</p> <p>cao, oe</p> <p>$= 4000 \text{ J} = 4 \text{ kJ}$</p> <p>All terms included, oe FT their KE and PE</p> <p>cao</p>
(b)	<p>$R = 16$</p> <p>$F = \frac{250}{v}$ (maximum force)</p> <p>Using N2L up plane with $\alpha = 0$ $F - R - mg \sin \alpha = 0$</p> <p>$F - 16 - 80g \left(\frac{2}{7}\right) = 0 \quad F - 240 = 0$</p> <p>$v = \frac{25}{24} = 1.04(166 \dots) \text{ (ms}^{-1}\text{) (max. speed)}$</p>	<p>B1</p> <p>M1</p> <p>A1</p> <p>A1</p> <p>A1</p> <p>[5]</p>	<p>$\sin \alpha = \frac{2}{7}$</p> <p>si</p> <p>All forces, dim. correct Correct equation</p> <p>$\frac{250}{v} - 16 - 80g \left(\frac{2}{7}\right) = 0$</p> <p>cao</p>

Total for Question 4

13

Further Notes	
(a) (ii)	<p><u>Alternative Solution(s) for Work-energy principle</u></p> <ul style="list-style-type: none"> • Energy at Start (PE) + WD by cyclist = WD against resistances + Energy at end (PE+KE) $7840 + \text{WD} = 1440\ 000 + 117600 + 4000$ $(800g + \text{WD} = 1440\ 000 + 12000g + 4000)$ <ul style="list-style-type: none"> • WD by cyclist = WD against resistances + Energy at end (gain in PE+KE) $\text{WD} = 1440\ 000 + 109760 + 4000$ $(\text{WD} = 1440\ 000 + 11200g + 4000)$

Q5	Solution	Mark	Notes
(a)	$\text{Impulse} = m_B v_B - m_B u_B$ (change in momentum) $= 2(-6 - 10)$ $ \text{Impulse} = 32 \text{ (Ns)}$ Opposite direction to original motion	M1 A1 A1 [3]	Used
(b)	 Conservation of momentum $(4)(3) + (-6)(2) = 3v_A + 2v_B$ $3v_A + 2v_B = 0 \quad (v_A = -\frac{2}{3}v_B)$ Loss in Kinetic energy $\frac{1}{2}(3)(4)^2 + \frac{1}{2}(2)(-6)^2 - \frac{1}{2}(3)v_A^2 - \frac{1}{2}(2)v_B^2 = 45$ $60 - \frac{3}{2}v_A^2 - v_B^2 = 45$ $3v_A^2 + 2v_B^2 = 30$ $3\left(\frac{-2v_B}{3}\right)^2 + 2v_B^2 = 30$ $v_B = \pm 3 \quad \text{or} \quad v_A = \pm 2$ $v_A = -\frac{2}{3}(\pm 3) = \mp 2 \quad v_B = -\frac{3}{2}(\pm 2) = \mp 3$ $(v_A, v_B) = (2, -3) \quad \text{or} \quad (-2, 3)$ speed $v_A = 2 \text{ (ms}^{-1}\text{)}$ speed $v_B = 3 \text{ (ms}^{-1}\text{)}$ Both objects are moving in the opposite direction to their original motion.	M1 A1 M1 A1 m1 m1 A1	Attempted All correct Attempted. Before = 60 After = $\frac{3}{2}v_A^2 + v_B^2$ One variable eliminated. cao
Total for Question 5		11	

Q6	Solution	Mark	Notes
(a)	<p> $7(1 - \cos \alpha) = \frac{7}{10}$ $mg(5 + 7(1 - \cos \alpha)) = \frac{1}{2}mv^2 + mg(5 \cos \theta)$ $5 \cdot 7g = 0 \cdot 5v^2 + 5g \cos \theta$ $55 \cdot 86 = 0 \cdot 5v^2 + 49 \cos \theta$ $2793 = 25v^2 + 2450 \cos \theta$ $285g = 25v^2 + 250g \cos \theta$ $v^2 = 111 \cdot 72 - 98 \cos \theta \quad (= 11 \cdot 4g - 10g \cos \theta)$ </p>	M1 A1 A1	KE and PE in dim. correct equation KE PE
	<p>Alternative solution $(PE = 0 \text{ along horizontal through } B)$</p> <p> $mg(7(1 - \cos \alpha)) = \frac{1}{2}mv^2 - mg(5(1 - \cos \theta))$ $0 \cdot 7g = 0 \cdot 5v^2 - 5g + 5g \cos \theta$ $6 \cdot 86 = 0 \cdot 5v^2 - 49 + 49 \cos \theta$ $343 = 25v^2 - 2450 + 2450 \cos \theta$ $v^2 = 111 \cdot 72 - 98 \cos \theta \quad (= 11 \cdot 4g - 10g \cos \theta)$ </p>	(M1) (A1) (A1)	KE and PE in dim. correct equation KE PE
	<p>(ii) N2L towards O</p> $50g \cos \theta - R = \frac{50v^2}{5}$ $R = 50g \cos \theta - \frac{50}{5}(111 \cdot 72 - 98 \cos \theta)$ $R = \begin{cases} 1470 \cos \theta - 1117 \cdot 2 \\ 150g \cos \theta - 114g \end{cases}$	M1 A1 m1 A1 [4]	Dim. correct equation $50g \cos \theta, R$ opposing Substitute for v^2 (any form)

	<p>(iii) Loses contact when $R = 0$</p> $1470 \cos \theta - 1117 \cdot 2 = 0$ $\cos \theta = \frac{114}{150} \quad \left(= \frac{1117 \cdot 2}{1470} = \frac{19}{25} \right)$ $\theta = 40 \cdot 5(358 \dots)^\circ$ $\theta = 40 \cdot 5(358 \dots)^\circ < 45^\circ$ <p>∴ ring loses contact before reaching C</p>	M1 A1 A1 [3]	Used. FT R from (ii) or $150g \cos \theta - 114g = 0$ Accept 41 FT R from (ii) FT R provided $\theta < 45^\circ$
	<p><u>Alternative Solution</u></p> <p>(iii) Sub. $\theta = 45^\circ$ into expression for R</p> $R = -77.7(530 \dots)$ $R = -77.7(530 \dots) < 0$ <p>∴ ring loses contact before reaching C</p>	(M1) (A1) (A1) ([3])	FT R from (ii) FT R FT provided $R < 0$
	<p>(iv) Rubber ring may lose contact at a greater value of θ or Rubber ring may remain in contact until C.</p>	E1 [1]	
(b)	<p>N2L towards D</p> <p>At $A, \cos \alpha = 0 \cdot 9: R_A - 50g(0 \cdot 9) = 50a$</p> $R_A = 50a + 45g > 45g = 441$ <p>At $B, \cos \alpha = 1: R_B - 50g = 50a$</p> $R_B = 50a + 50g > 50g = 490$ <p>$R_B > R_A > 0$ so must remain in contact</p>	M1 A1 A1 [3]	<p>Dim. correct equation</p> <p>Any correct equation including $R' - 50g \cos \alpha = 50a$</p> $a = \frac{v^2}{r} > 0$ <p>Convincing</p>
Total for Question 6		15	